
convective transport is much longer than the time of the chemical reaction. Thus, ~, is 
slightly dependent on the reaction time, which in turn is determined by the initial tempera- 

ture. 
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TWO-PHASE FLOW IN A CHANNEL WITH ERODING WALLS 

V. V. Kriklivyi, A. P. Trunev, 
and V. M. Fomin 

UDC 532.529.5+629.7.036.54 

The problem of two-phase flow in an axisymmetric channel, the walls of which can be de- 
stroyed through erosion, is considered in the paper. Two-phase flows in channels accompanied 
by wall erosion were studied in [I-4]. Since the mechanism of energy transfer to the eroding 
surface can differ depending on the conditions at the flow boundaries, each of these investi- 
gations is of independent interest. Here we consider erosion under the impact action of solid 
or liquid particles [5], while the main mechanism of energy transfer is assumed to be con- 
vective transport of the condensed phase. An erosion model describing this case was proposed 
in [6], and it lay at the basis of the present work. Certain exact relations connecting the 
parameters of the condensed phase with the parameters of the profile of the axisymmetric 
channel are obtained. It is shown that the process of erosion with convective transport of 
particles to the wall develops unstably, and the time of development of the instability is 
estimated. A numerical quasi-one-dimensional model of two-phase flow in a channel with erod- 
ing walls is developed, permitting a wide range of parametric research. 

I. Determination of Particle Trajectories in Two-Phase Flow 

We consider the flow of a mixture of a gas and solid particles in an axisymmetric chan- 
nel with curved walls. We take the gas to be inviscid and not thermally conducting in its 
interaction with the solid boundary and we neglect the intrinsic volume of the particles. To 
describe the flow we introduce a cylindrical coordinate system with the origin in the en- 
trance cross section of the channel and we designate the axial coordinate as x and the radial 
coordinate as y. The following equations [7] are satisfied for the steady motion of particles 
of radius a along the trajectory of motion ya(x): 

uadua/dx ---- qJa( l l  - -  Ua) , u.d~'a/dx = ( ~ a ( l ; -  Ua) , 
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dYaldx = v~lua, ( 1 . 1 ) 

where u a and va are the axial and radial components of the particle velocity, respectively; 
@a is a parameter of the force interaction between phases. By differentiating the last of 
Eqs (I. I) and combining the result with the first two, we obtain the equation 

" ' v ----0. (I 2) l~y~ + Ya ~ 

Here the parameter I a ----u~/(~au ) has the dimension of length and is a measure of the difference 
of the particle trajectories from the streamlines of the carrier gas. In particular, as I a * 

0 we get Ya = v/u from (I .2), i.e., the particle trajectories coincide with the streamlines 
H 

of the carrier gas in this case; conversely, as I a -* o~ we have Ya = 0, i.e., the particles 
are free and move along straight lines in this case. For an ideal gas the condition of non- . T . . . 

penetratlon (u/v = Yw) is satlsfled at the solid boundary yw(x) of the flow. Using the con- 
tinuity equation, this condition can be extended into the interior of the flow region. Then 
near the wall we will have 

, d 
v/u = y~ :~ (yw - -  y) ~ In (puy)w + . . . .  

where the index w means that the indicated quantity is taken at the channel wall, while the 
dots denote terms of higher-order smallness in the expansion of the ratio v/u. Substituting 
this expression into Eq. (1.2), we finally have 

t! n t 

l~y~ + y o -  y~ + ( yo -y~ )  ~ In (t)uy)~ = O. ( 1 . 3 )  

Equation (1.3) describes a bundle of trajectories of particles moving near the channel wall 
and making the main contribution to the energy flux to the surface being eroded. It was 
established earlier that in one case the transport of particles to the wall is due to the 
curvature of the streamlines of the carrier gas, while in another case everything is deter- 
mined by the conditions at the channel entrance and by the greater inertia of the condensed 
phase [I-4]. Evidently, both cases can be important in practice, but in the present paper 
we shall consider only the first of them, which is described by Eq. (1.3). 

Let us estimate the numerical value of I a in Eq. (1.3). Forasphericalparticlewehave 

la ~ 8psu~a/(3P~Z I u --u a I CD), 

where C D is the drag coefficient; Ps is the density of the particle material. Taking u a = 
0.7u and CD ~ I, which corresponds to motion of the particles with a considerable velocity 
lag, for Ps/P = 4"IU 3 we obtain the estimate la ~< 2-10 ~ a. For micron-sized particles moving 
in a channel with a characteristic size L ~ I m we will have a small parameter c = la/L <~ 

10 -l to the leading derivative in Eq. (1.3). The presence of the small parameter simplifies 
the investigation of the problem, which is a singularly perturbed problem [8, 9], however, 
imposing certain restrictions on the class of functions yw(x) figuring in the analysis. Using 
perturbation theory, we can obtain the following result: The inclusion of the particle trajec- 
tories as they strike the channel wall is determined from the equation (cf. with [9]) 

g P H 

Ya = Yw - -  layw -t- 0 (eZ), e < <  t .  ( 1 . 4 )  

Here the local radius of curvature is chosen as the characteristic size. An analysis of Eq. 
(1.4) allows us to conclude that particles strike the wall in a section of flow where the 
profile has a negative curvature. Through perturbation theory we can also establish the point 
of incidence of a particle which began moving at the point with the coordinates (x0, y0). For 
the particle trajectory in the first approximation we have, from Eq. (I.3), the expression 

r 

y~ = y~ - (o~y)~ # (e~)~ lj'odz + O (~), 
~0 

where yg is the gss streamline satisfying the condition yg(x0) = Y0. In particular, a tra- 
jectory exists for which the equality yg(x0) = yw(x0) is valid, and therefore yg(x) = yw(• 
This line separates the region of pure gas near the wall from the region of two-phase flow. 
The separation of particles is usually observed in nozzles and is a peculiarity of two-phase 
flows [9]. The equation of the interface has the form 

�9 i " Y~ = Y w -  ( p u y ) 7  ~ ~ ( 9 u y ) ~  l~y,,,d.'~ + 0 (e2). (1  . 5 )  
x 0 

73 



(We note that if (puy) w ~ const, then, contrary to [9], the equation of the dividing line 

*(x I) = Yw(Xl) at a certain (1.3) is reduced to (1.4) only for Ya = Yw') Assuming that Ya 
point xl, from (1.5) we obtain the condition for particles striking the nozzle wall in the 
supersonic part in the form 

I" 1oy ax o ( ]. 6) 
~0 

From (I .6) it follows that to find the functions x0(a) and xl(a) one must investigate the 
second order of perturbation theory for the solution of Eqs. (1.3). Thus, to within ~ the 
coordinates x0(a), xl(a) where particles strike the wall do not depend on the particle size. 
Numerical calculations of particle trajectories confirm these conclusions. The relative quan- 
tity (Yw -- Y~)/Yw for the limiting trajectories is shown in Fig. 1: curves I-3 are for par- 
ticles with diameters of 1.5, 2.8, and 4.0 ~m, respectively. The general form of the nozzle 
profile and one of the particle trajectories are shown in the upper part of Fig. I. One can 
see that the smallest particles lie closer to the wall everywhere except for the erosion re- 
gion in the supersonic part of the nozzle, where the largest particles (curves 2 and 3) strike 
before the small ones (curve I). From an analysis of the limiting cases of I a § O, oo for the 
solution of Eq. (1.3) it follows that the dependence xl(a) of the point of incidence on the 
particle size has a nonmonotonic character. This is confirmed by the numerical calculations. 
The dependence xl(a) is plotted in Fig. 2 (curve I) for a nozzle with a parabolic generating 
line in the end section. A clear minimum in the x1(a) curve is observed here. 

Usually the point x0 corresponds to the part of the profile in the subsonic region of 
flow where the second derivative Yw of the profile changes sign (possibly with a jump). In 

rF 

the throat section of the nozzle, where Yw > O, the integral (I .6) grows, so that a neces- 
sary condition for outward transport of particles in the supersonic part consists in the pres- 
ence of a section of profile with a negative curvature, Yw < 0. Thus, in a conical nozzle 

t! 
Yw = 0 and the outward transport of particles is not possible here, as was established in [10] 

;! 

by a numerical analysis. On the other hand, Yw < 0 in a nozzle with a parabolic generating 
line, so that the transport of particles to the wall can occur. Another necessary condition 
for transport for a nozzle of finite length L consists in the presence of particle fractions 
whose size satisfies the condition xl(a) < L. 

Thus, the acceleration produced by the curvature of the streamlines of the carrier gas 
and acting on the inertial particles is the main cause of particle transport to the boundary 
of the two-phase flow in a channel of sufficiently large size. If the relaxation parameter 
I a is larger (1 a ~ L), however, then particle transport to the wall will be determined by the 

! 

conditions at the channel entrance, mainly the initial inclination ya(0) of the particle tra- 
jectories [4]. 

2. Model of Erosional Destruction 

The particles reaching the channel walls have a considerable store of kinetic energy. 
A particle's velocity may exceed I km/sec when it strikes the supersonic part of the nozzle. 
In a high-velocity collision considerable stresses develop at the point of contact and the 
destruction of wall material occurs. The destruction effect becomes even more pronounced 
in the collision with a flux of particles. In this case the mass removal of wall materials 
occurs, which can be described mathematically by the function Yw = yw(x, t). According to 

y f 
[6], for the function Yw(X, t) we have the equation (everywhere below we take Ya > Yw, other- 
wise we take 3yw/3t = O) 

P* Oy~ = ~Eagaua(y~__y~)"  ( 2 . 1 )  
Ot 

. a 

Here 9" is the density of the material being eroded (the wall); E a is the erosion coefficient, 
which is a function of the parameters of the collision; Pa is the flux density of the discrete 
phase. For flow with monodisperse particles it is sufficient to retain one term on the right 
side of (2.1). An analysis of numerous data on erosion [2, 5, 11] and of data on high-ve- 
locity impact [12] leads to the conclusion that in the region of low collision angles the 
erosion coefficient can be represented in the form 

E a = (Va~/qer) (sin cca) '~, oc a ~ 20 ~ 
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where Oer is a parameter characterizing the resistance of the material to erosional destruc- 
tion; q is an exponent which can vary within wide limits for different materials. Thus, ac- 
cording to [11], q = 0.802 for graphite and q = 1.63 for glass at a moderate collision ve- 
locity. It is convenient to express the collision angle through the inclination of the tra- 
jectory and the local inclination of the wall through the equation 

�9 f r ( a d . =  arctg 1 ' ' ) "Jr YaYw 

and, in addition, to set V~ = u~(1 + y~e)q+1. 

Then for erosion by monodisperse particles the equation of wall erosion will have the 

form 
�9 s2 ~ = c ~ + y~ ( / ~ _  y~)~+~, ( 2 . 2 )  

t r \ q  

where  G i s  t h e  c h a r a c t e r i s t i c  e r o s i o n  r a t e  (G = p u ~ / ( P * ~ e r ) ) .  I n  t h e  d e r i v a t i o n  o f  Eq. ( 2 . 1 )  
it was assumed that the influence of the erosion produced on the flow of the mixture is insig- 
nificant. This is clearly satisfied when the flow rate of the condensed phase is low (Ocz/ 
O < I). For Pa ~> O the injection of erosion products from the surface being destroyed can 
alter the parameters of the two-phase boundary layer. Since the flow is assumed to be in- 
viscid in the present paper, we also neglect the influence of the erosion products. Thermal 
destruction of the wall material is also ignored in the model being used. Estimates show that 
in the investigated region of the parameters (u a > | km/sec) the erosion rate exceeds the rate 
of thermal destruction by more than an order of magnitude. The influence of the wall tempera- 
ture on the erosion rate can be taken into account through the definition of the function 
Oer = Oer(Tw) [13]; however, in the present paper the influence of temperature is not taken 

into account. 

3. Comment on the Stability of the Process of Nozzle Erosion 

We use the approximation of minor slippage of the condensed phase (e ~ I). Substituting 
Eq. (1.4) into (2.2), we obtain the equation 

I 0 y~. - ' ~1 02Uw q 2 

! 
w h e r e  D(x Yw) = Lq+zG(1 + y~Z) l - q  i s  a n o n n e g a t i v e  f u n c t i o n .  I n  a n a l y z i n g  Eq.  ( 3 . 1 )  we 

Conclude that the process of erosion with convective outward transport of particles develops 
like a system with negative viscosity [14]. Consequently, the system of equations (1.3), 
(2.2) is asymptotically unstable. The physical factors promoting the development of in- 
stability in a system of two-phase flow and a confining eroding surface are rather obvious. 
In accordance with Eq. (2.2), the erosion rate is the higher, the greater the collision angle, 
which, as follows from the approximate expression (1.4), increases with an increase in the 
local curvature of the wall. If a small hole forms in the erosion region, then the erosion 
rate increases somewhat in the vicinity of the hole, leading to an increase in the local 

75 



curvature. Equation (3.1) predicts that this tendency will be strengthened. To find the 
most unstable mode of disturbance we must consider the system of equations (1.3), (2.2), since 
(3..I) is valid only for disturbances with a wavelength % ~ I a. Since these equations have 
variable coefficients, it does not seem possible to solve this problem in the general case. 
However, an analysis of a system describing the erosion of a thin profile [6] allows us to 
estimate the time of development of the instability as 

�9 ~ (R/~)q~/G~ (3.2) 

where R is the local radius of curvature of the wall. In using the estimate (3.2) in cal- 
culations, one must consider that this may prove inapplicable in situations where nonlinear 
effects are important. Finally, it is interesting to note that in the sputtering of par- 
ticles onto a surface the process will develop stably, since in this case an equation of the 
type (3.1) but with the opposite sign on the right side will also be valid. 

4. Numerical Model and Some Results of the Calculations 

A variety of parameters capable of affecting the erosion process were taken into account 
in the development of a numerical model of two-phase flow in a channel with eroding walls. In 
the first stage of the investigation a quasi-one-dimensional model was developed, permitting 
a wide range of parametric research. 

To calculate the parameters of two-phase flow in an axisymmetric channel we used the 
Kligel--Nickerson model, described in detail in [15]. The initial profile of the nozzle was 
assigned by a set of seven parameters; its general form is presented in Fig. I. The param- 
eters Pa, ua, and I a of the condensed phase were calculated within the framework of the 
quasi-one-dimensional theory, and then they were used in the numerical integration of Eqs. 
(1.3) and (2.2). Seeking to obtain qualitative results on the development of the process 
of nozzle erosion, we took a flow rate (puy) w equal to the average flow rate in the channel, 
i.e., (puy) w = const/yw. 

The bundle of trajectories was determined from Eq. (1.3), the local values of the angle 
and velocity of the collision were calculated, Eq. (2.2) was investigated over one time step, 
the position yw(X, t) of the solid boundary was refined, and then the bundle of trajectories 
was calculated for the altered conditions. The procedure was repeated the required number of 
times. The total integration time did not exceed the time of development of instability in 
the system, determined from (3.2) (T < ~). Special calculation methods are required to study 
the development of instability, which is a task for future research. 

In Fig. 2 we present the results of a calculation of the maximum erosion depth AYw = 
[yw(x, t) -- yw(X, 0)]max/Yw(Xmax, 0), normalized to the radius of the through cross section, 
as a function of the size of the eroding particles (curve 2). One can see that there is a 
particle fraction presenting the greatest danger of destruction of a nozzle with a given wall 
geometry. We note one peculiarity in the calculation of the region of destruction for erosion 
by monodisperse particles. In this case the left-hand boundary xl of the calculation region 
is a moving boundary, so that the geometry of the erosion crater to the right of the point xl 
is determined by the inclination dy~(xl)/dx of the limiting trajectory. In Fig. 3 it is shown 
how the calculation algorithm operates with allowance for this fact. Curves I-3 denote the 
position of the nozzle profile for erosion by particles with diameters of 2.0, 3.3, and 4.3 
Mm, respectively, and curve 4 is the position of the nozzle profile before the start of ero- 
sion. One can see that curves I-3 are constructed from pieces of the limiting trajectories 
y~(x) (denoted by dashes) and are extended to the right of the point x*(t) by a profile Yw(X, 
t) satisfying the condition yw(x*, t) = y~(x*, t). 

In Fig. 2 we show the dependence of the erosion rate U at x = 0.98 (indicated by an 
arrow in Fig. I) on the size of the eroding particles (curve 3). It is seen that the erosion 
rate grows monotonically with an increase in particle diameter, which also follows directly 
from Eq. (1.4) for the difference in inclinations, Ya -- Yw" 

We note that for erosion by polydisperse particles one must use Eqs. (2.1) to calculate 
the resulting damage. From an analysis of the data presented in Figs. 2 and 3 it follows 
that in this case one must know the size distribution function of the particles. The form 
of the distribution curve has a more significant influence on the erosion than on the other 
parameters of the two-phase flow, which is consistent with the conclusions of [16]. 
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FLUX METHOD IN THE KINETICS OF COAGULATION 

A. A. Likal'mer UDC 54-138 

Coagulation causes broad fluctuations in the concentration and size distribution of 
aerosol particles [I]. Measured particle-radius distributions are dome-shaped. The top part 
of the dome is usually described by the so-called log-normal distribution. The right: side 
may descend significantly slower than the left side in accordance with a power law [2]. A 
power spectrum was observed for an atmospheric aerosol in [3]. Later on it was explained on 
the basis of a representation of constant mass flux over the particle spectrum. The form of 
the spectrum follows from dimensional considerations with the use of the locality hypothesis 
[4, 5], to within the accuracy of a coefficient. A stationary spectrum was obtained in [6] 
on the basis of a kinetic equation. Stationary power spectra with thermal and gravitational 
coagulation in different ranges of particle radius were obtained in [7] along with coeffi- 
cients. It was shown in [8] that these results follow from a more general analysis of the 
kinetic equation with the use of the notions of fluxes of particles and mass over the spec- 
trum. However, until now there has been no direct kinetic determination of the flux, which 
is important in the theory of coagulation and in certain other similar problems. 

This article explicitly determines the flux of the number and volume of particles (drops) 
over the spectrum corresponding to the physical significance of these quantities. This 
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